
Carnegie Mellon
Software Engineering Institute

The Team Software
ProcessSM (TSPSM)

Watts S. Humphrey

November 2000

TECHNICAL REPORT
CMU/SEI-2000-TR-023

ESC-TR-2000-023

20010312 119

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask. don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Carnegie Mel Ion
Software Engineering Institute
Pittsburgh, PA 15213-3890

The Team Software
ProcessSM (TSPSM)

CMU/SEI-2000-TR-023
ESC-TR-2000-023

Watts S. Humphrey

November 2000

Team Software Process Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
HanscomAFB. MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Joanne E. Spriggs
Contracting Office Representative

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2000-TR-023

Table of Contents

Acknowledgements vii

Abstract ix

1 Software Quality 1

2 How the TSP Was Developed 3

2.1 Engineering Teamwork 3

2.2 The Conditions for Teamwork 4

2.3 Effective Teams 5

2.4 Building Effective Teams 6

3 An Operational Team Process 7

4 The Structure of the TSP 9

5 Launching a TSP Team 11

6 The TSP Teamworking Process 15

6.1 Leading the Team 15

6.2 Communication 16

6.3 Maintaining the Plan 16

6.4 Rebalancing Team Workload 18

7 TSP Quality Management 19

7.1 The Quality Plan 19

7.2 Identifying Quality Problems 23

7.3 Finding and Preventing Quality Problems 26

8 TSP Introduction 29

9 TSP Experience 31

10 Status and Future Trends 33

10.1 Training and Support 33

10.2 Future Trends 33

i

References 35

CMU/SEI-2000-TR-023

List of Figures

Figure 1: Process Improvement Methods 8

Figure 2: TSP Team-Building 9

Figure 3: The TSP Process Flow 10

Figure 4: The TSP Launch Process 11

Figure 5: Percent Defect Free (PDF) 24

Figure 6: Defect Removal Profile 25

Figure 7: The Quality Profile 26

Figure 8: TSP Test Defects 32

Figure 9: TSP Test Time 32

CMU/SEI-2000-TR-023

jv CMU/SEI-2000-TR-023

List of Tables

Table 1: The TSP Team Launch—Script LAU 12

Table 2: Weekly Team Data 17

Table 3: TSP Quality Guidelines 20

Table 4: TSP Quality Plan—Form SUMQ 21

CMU/SEI-2000-TR-023

CMU/SEI-2000-TR-023

Acknowledgements

Contributing reviewers for this article were Eileen Forrester, Marsha Pomeroy Huff, Alan
Koch, Don McAndrews, Jim McHale, Julia Mullaney, Mark Paulk, Bill Peterson, and Janice

Marchok Ryan.

CMU/SEI-2000-TR-023 v"

vjjj CMU/SEI-2000-TR-023

Abstract

The Team Software ProcessSM (TSP) guides engineering teams in developing software-
intensive products. Early experience with the TSP shows that its use improves the quality and
productivity of engineering teams while helping them to more precisely meet cost and sched-
ule commitments. The TSP is designed for use with teams of 2 to 20 members, and the larger
multi-team TSP process is designed for teams of up to about 150 members. While TSP ver-
sions are planned for larger projects, they are not available at the time of this writing.

This report describes the TSP and how it was developed. Starting with a brief background
discussion of software quality, the report provides an overview of the basic elements of
teamwork. It then describes the relationships among the TSP, Personal Software ProcessSM

(PSP), and Capability Maturity Model® (CMM) process improvement initiatives. The report
also describes the TSP process structure, launching a TSP team, the TSP teamworking proc-
ess, and the issues and methods for introducing the TSP. The report concludes with a review

of TSP experience, current status, and trends.

SM Team Software Process, TSP, Personal Software Process, and PSP are service marks of Carnegie
Mellon University.

® Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office.

CMU/SEI-2000-TR-023 ix

CMU/SEI-2000-TR-023

1 Software Quality

Team Software Process (TSP) development follows the quality strategy that was originated
by W. Edwards Deming and J.M. Juran [Deming 82, Juran 88]. This strategy was extended to
the software process by Michael Fagan in 1976 [Fagan 76, Fagan 86]. It was further extended
with the introduction of the Capability Maturity Model (CMM) in 1987 and the Personal
Software Process (PSP) in 1995 [Humphrey 89, Humphrey 95, Paulk 95].

Following the PSP, a further important step in software process improvement was the intro-
duction of the Team Software Process (TSP). The TSP provides a disciplined context for en-
gineering work. The principal motivator for the development of the TSP was the conviction
that engineering teams can do extraordinary work, but only if they are properly formed,
suitably trained, staffed with skilled members, and effectively led. The objective of the TSP is

to build and guide such teams.

CMU/SEI-2000-TR-023

CMU/SEI-2000-TR-023

2 How the TSP Was Developed

In 1996, Watts Humphrey developed the initial version of the TSP process. His objective was
to provide an operational process to help engineers consistently do quality work. He designed
the initial TSPO process to be as simple as possible, tried it with two teams, and then re-
viewed the results to see how it worked. He then identified where the teams needed further
guidance and enhanced the process to provide that guidance. The first TSPO process was de-
signed for PSP-trained teams who received no training or guidance other than that provided

by the TSP process and the team's immediate management.

Based on the results from the two initial TSP teams, it was clear that the TSP helped engi-
neers to do disciplined work but that more guidance and support was needed. It was also ob-
vious that management must broadly support the TSP process. An enhanced TSPO. 1 process
was then used by additional teams, providing more information on needed process refine-

ments.

Over the next three years, Humphrey developed nine more TSP versions. At the beginning,
his objective was to see if a general-purpose team process could help engineering teams to do
their work. Once it was clear that the TSP met this basic objective, his TSP process develop-
ment efforts were directed toward simplifying the process, reducing its size, and providing
the support and guidance needed to make the process most efficient and useful. As a result,
the most recent TSP versions are substantially smaller than the TSPO. 1 and TSP0.2 versions

developed in late 1996 and early 1997.

As more groups have used the TSP process, several introduction methods have been devel-
oped to assist engineers and managers in building teams, better following the process, and
periodically reassessing and replanning projects. Various prototype support tools have also
been developed to simplify the engineers' planning, data recording, data analysis, and project
reporting activities.

2.1 Engineering Teamwork
Teams are required for most engineering projects. Although some small hardware or software
products can be developed by individuals, the scale and complexity of modern systems is
such, and the demand for short schedules so great, that it is no longer practical for one person
to do most engineering jobs. Systems development is a team activity, and the effectiveness of
the team largely determines the quality of the engineering.

CMU/SEI-2000-TR-023

There are different kinds of teams. In sports, for example, a basketball team's positions are
dynamic while baseball team members have more static roles. However, in both cases the
members must all work together cooperatively. Conversely, wrestling and track teams are
composed of individual competitors who do not dynamically interact, although the members

support each other socially and emotionally.

In engineering, development teams often behave much like baseball or basketball teams.
Even though they may have multiple specialties, all the members work toward a single ob-
jective. However, on systems maintenance and enhancement teams, the engineers often work

relatively independently, much like wrestling and track teams.

A team is more than just a group of people who happen to work together. Teamwork takes

practice and it involves special skills. Teams require common processes; they need agreed-
upon goals; and they need effective guidance and leadership. The methods for guiding and

leading such teams are well known, but they are not obvious. The Software Engineering In-
stitute (SEI) is supporting the TSP as a way to guide engineers and their managers in using

effective teamwork methods.

2.2 The Conditions for Teamwork
A team is a group of people who share a common goal. They must all be committed to this
goal and have a common working framework. The following definition for a team has been

adapted from [Dyer 84]:

• A team consists of at least two people.

• The members are working toward a common goal.

• Each person has a specific assigned role.

• Completion of the mission requires some form of dependency among the group mem-
bers.

The four parts of this definition of a team are all important. For example, it is obvious that a
team must have more than one member, and the need for common goals is also generally ac-
cepted. However, it is not as obvious why team members must have roles. Roles provide a
sense of ownership and belonging. They help to guide team members on how to do their jobs;
they prevent conflicts, duplicate work, and wasted effort; and they provide the members with
a degree of control over their working environment. Such a sense of control is a fundamental

requirement for motivated and energetic team members.

Interdependence is also an important element of teamwork. It means that each team member
depends to some degree on the performance of the other members. Interdependence improves
individual performance because the members can help and support each other. For example,
design teams generally produce better designs than any individual member could have pro-
duced alone. This is because the team members have a broader set of skills and experiences
than any one of the members has alone. Team performance is further enhanced by the social

4 CMU/SEI-2000-TR-023

support of membership. Human beings are social animals and few people like to work en-
tirely by themselves—at least not for very long. Because of the social context of teams, the
members will generally make a special effort to meet their obligations to the rest of the team.
Through mutual support and interdependence, teams become more than just the sum of their

individual members.

2.3 Effective Teams
To be effective, teams must be properly skilled and be able to work as cohesive units. Effec-

tive teams have certain common characteristics:

• The members are skilled.

• The team's goal is important, defined, visible, and realistic.

• The team's resources are adequate for the job.

• The members are motivated and committed to meeting the team's goal.

• The members cooperate and support each other.

• The members are disciplined in their work.

Another characteristic of effective teams is their ability to innovate. Innovation is more than
just thinking up bright ideas; it requires creativity and a lot of hard work. Just about every
engineering task is part of an innovative endeavor. Innovative teams must have skilled and
capable people who are highly motivated. They must be creative, flexible, and disciplined.
They must strive to meet demanding schedules while adjusting to changing needs. They must
also control costs and schedules while keeping management informed of their progress.

To be innovative and effective, engineering teams must work in a trusting and supportive en-
vironment [Shellenbarger 00]. Engineering teams are composed of extremely capable people
who can quickly sense a lack of trust. When managers do not trust their teams to make ag-
gressive schedules or to strive to meet these schedules, the engineers will know it. When en-
gineers do not feel trusted and respected, they often feel antagonized and manipulated. These
engineers no longer feel loyal to the organization and can easily lose their commitment to the

team.

Since people generally work harder when they face an important and meaningful challenge, it
is appropriate for management to challenge their teams with aggressive goals. But when the
teams respond to the challenge with a plan, management must be willing to negotiate realistic
commitments that the engineers believe they can meet. Few people will work diligently to
meet a seemingly hopeless schedule. To perform effectively, teams must believe that their

project is important and that the schedule is achievable.

CMU/SEI-2000-TR-023

2.4 Building Effective Teams
The TSP is designed to establish the conditions that characterize effective teams [Cummings
87, DeMarco 87, Dyer 84, Katzenbach 93. Mohrman 95. Shaw 81, Stevens 94]. The team-
building principles used in the TSP to establish these conditions are as follows:

The team members establish common goals and defined roles.

The team develops an agreed-upon strategy.

The team members define a common process for their work.

All team members participate in producing the plan, and each member knows his or her
personal role in that plan.

The team negotiates the plan with management.

Management reviews and accepts the negotiated plan.

The team members do the job in the way that they have planned to do it.

The team members communicate freely and often.

The team forms a cohesive group: the members cooperate, and they are all committed to
meeting the goal.

The engineers know their status, get feedback on their work, and have leadership that
sustains their motivation.

Effective team formation requires that the members truly understand what they are supposed
to do, agree on how to do the job, and believe that their plan is achievable. These conditions
can all be established by involving the engineers in producing their own plans. Then, assum-
ing that these plans are competently made, teams can almost always sell their plans to man-

agement.

While all these conditions are necessary for effective teamwork, the specific ways for estab-
lishing these conditions are not obvious. The TSP provides the explicit guidance that organi-

zations need to build effective engineering teams.

CMU/SEI-2000-TR-023

3 An Operational Team Process

To do disciplined work, engineers need what Deming calls "operational processes" [Deming
82]. These are processes that define precisely how the work is to be done. While most poorly
defined software processes are large and comprehensive text descriptions that are filed in
process definition books, an operational process is more like a script. It is designed to be used
by the team members when they do the work.

The TSP provides a defined operational process to guide engineers and managers through the
team-building steps. This process specifies the steps needed to establish an effective team-
working environment. Without specific guidance, engineers must work out the details of
team-building and teamworking for themselves. Since defining these details involves consid-
erable skill and effort, and since few engineers have the experience or time to work out all of
the necessary details, engineering teams generally follow ad-hoc team-building and team-
work processes. This wastes time and it often produces poorly functioning teams.

With a defined process and a plan that follows that process, engineers can be highly efficient.
If they don't have such a process, they must stop at each step to figure out what to do next
and how to do it. Most engineering processes are quite complex and involve many steps.
Without specific guidance, engineers are likely to skip steps, to do steps in an unproductive
order, or to waste time figuring out what to do next. The TSP provides the operational proc-
esses needed to form engineering teams, to establish an effective team environment, and to

guide teams in doing the work.

As shown in Figure 1, the TSP is one of a series of methods that can help engineering teams
to more effectively develop and support software-intensive systems. The Capability Maturity
Model (CMM) provides the overall improvement framework needed for effective engineer-
ing work [Paulk 95]. The Personal Software Process (PSP) provides the engineering disci-
plines that engineers need for consistently using a defined, planned, and measured process
[Humphrey 95]. The TSP couples the principles of integrated product teams with the PSP and
CMM methods to produce effective teams. In essence, the CMM and PSP provide the context
and skills for effective engineering while the TSP guides engineers in actually doing the
work. Thus, the TSP capitalizes on the preparation provided by the PSP and CMM, while also

providing explicit guidance on how to do the work.

CMU/SEI-2000-TR-023

ä. A* o: ".D.V.D:
tUi

tiWi D:
w ?f|« 0 Ö* 0fl 010. 0 «0.0 ß 0 -Q;

»ni f|T ?fl" fTT TV TV MT TV ij,j, ssJi lUk gut Ui tut «Üb iU>

CMM - Improves
organization's
capability;
management focus.

o o o o o o
!,fiMfT"fl!! ?.rf??pjMfT 'FT'FT"^

ODD ODD D 0 Ü
o 6 o

rr? rn- t!T y|J| teLaJii KtMfc

D

TSP - Improves team
performance; team
and product focus.

PSP - Improves
individual skills and
discipline; personal
focus.

Figure 1: Process Improvement Methods

CMU/SEI-2000-TR-023

4 The Structure of the TSP

The principal elements of the TSP process are shown in Figure 2. Before the members can
participate on a TSP team, they must know how to do disciplined work. As shown in this fig-
ure, training in the Personal Software Process (PSP) is required to provide engineers with the
knowledge and skills to use the TSP. PSP training includes learning how to make detailed
plans, gathering and using process data, developing earned value plans, using earned value to
track a project, measuring and managing product quality, and defining and using operational
processes. Engineers must be trained in these skills before they can participate in TSP team

building or follow the defined TSP process.

PSP
Skill-building

Personal plans
Planning methods
Earned value
Process data
Quality measures
Defined processes

TSP
Team-building

Commitment
Aggressive plans
Quality ownership
Project goals
Plan ownership
Plan detail
Team roles
Team resources

TSP
Team-working

Quality priority
Cost of quality
Follow the process
Review status
Review quality
Communication
Change management

Figure 2: TSP Team-Building

While there are many ways to build teams, they all require that the individuals work together
to accomplish some demanding task. In the TSP, this demanding team-building task is a four-

CMU/SEI-2000-TR-023

day planning process that is called the team launch. In a launch, all the team members de-
velop the strategy, process, and plan for doing their project. After completing the launch, the
team follows its own defined process to do the job.

As shown in Figure 3, TSP teams are relaunched periodically. Because the TSP process fol-
lows an iterative and evolving development strategy, periodic relaunches are necessary so
that each phase or cycle can be planned based on the knowledge gained in the previous cycle.
The relaunch is also required to update the engineers' detailed plans, which are usually accu-
rate for only a few months. The reason for having a relaunch is that detailed plans can only be
accurate for a few months. In the TSP launch, teams make an overall plan and a detailed plan
for about the next three to four months. After the team members have completed all or most
of the next project phase or cycle, they revise the overall plan if needed and make a new de-
tailed plan to cover the next three to four months. They are guided in doing this by the TSP

relaunch process.

Launch

Cycle 1

Standards

Relaunch

Cycle 2

Resources

Plan/
Actual

Forms
Scripts

Process

Relaunch

Cycle n

Management

Process Data

41

Postmortem

Actual
Data

Products

Status Reports Customer

Figure 3: The TSP Process Flow

10 CMU/SEI-2000-TR-023

5 Launching a TSP Team

Once the team members have been properly trained and the team has been formed, the entire
team participates in the TSP team launch. The launch process is shown in the launch script in
Table 1 and in Figure 4. Each of the 9 launch meetings has a script that describes the activi-
ties in enough detail so that a trained launch coach can guide the team through the required
steps. By following the launch process, teams produce a detailed plan. To become a cohesive
and effective working unit, all the team members must be committed to the plan. To build this
commitment, the TSP involves all the team members in producing that plan. Thus, by com-
pleting the TSP launch process, all the team members will have participated in producing the
plan and they will all agree with and be committed to the plan that they produced.

Day 1 Day 2 Day 3 Day 4

1. Establish
product and

business
goals

* ■

2. Assign roles
and define
team goals

1 *

3. Produce
development

strategy

4. Build top-
down and

next-phase
plans

< '

5. Develop
the quality

plan

■ '

6. Build bottom-
up and

balanced
plans

7. Conduct
risk

assessment

i *

8. Prepare
management
briefing and

launch report

9. Hold
management

review

Perform the
launch

postmortem

New teams:
TSP process

review

Figure 4: The TSP Launch Process

CMU/SEI-2000-TR-023 11

Table 1: The TSP Team Launch—Script LAU
Purpose To guide integrated teams in launching a software-intensive project
Entry Criteria The launch preparation work has been completed (PREPL, PREPT).

For the launch, the management and marketing representatives are pre-
pared and available for meetings 1 and 10.
All team members and the team leader are committed to attend the launch
meetings 1 through 9 and the postmortem.
An authorized launch coach is on hand to lead the launch process.

General Timing
Meetings 1, 2, and 3 are held on launch day 1.
Meetings 4, 5, and 6 are held on day 2.
Meetings 7 and 8 are on day 3.
Meeting 9 and the launch postmortem are held at the close of day 3 or in
the morning of day 4.

Step Activities Description
1 Project and

Management
Objectives

Hold team launch meeting 1 (use script LAU1).
Review the launch process and introduce team members.
Discuss the project goals with management and ask questions.

2 Team Goals and
Roles

Hold team launch meeting 2 (use script LAU2).
Select team roles and backup roles.
Define and document the team's goals.

3 Project Strategy
and Support

Hold team launch meeting 3 (use script LAU3).
Produce a system conceptual design and fix list (if needed).
Determine the development strategy and products to produce.
Define the development process to be used.
Produce the process and support plans.

4 Overall Plan Hold team launch meeting 4 (use script LAU4).
Develop size estimates and the overall plan.

5 Quality Plan Hold team launch meeting 5 (use script LAU5).
Develop the quality plan.

6 Balanced Plan Hold team launch meeting 6 (use script LAU6) and produce
allocation of work to team members
bottom-up next-phase plans for each team member
a balanced next-phase plan for the team and each team member

7 Project Risk
Analysis

Hold team launch meeting 7 (use script LAU7).
Identify and evaluate project risks.
Define risk assessment checkpoints and responsibilities.
Propose mitigation actions for immediate high-impact risks.

8 Launch Report
Preparation

Hold team launch meeting 8 (use script LAU8).
Prepare a launch report to management.

9 Management
Review

Hold team launch meeting 9 (use script LAU9).
Review launch activities and project plans with management.
Discuss project risks, responsibilities, and planned actions.

PM Launch Post-
mortem

Hold team launch meeting 9 (use script LAU9).
Walk through the weekly report preparation.
Gather launch data and produce a launch report.
Enter this report in the project notebook.
Assess the launch process and prepare PIPs.

Launch completed with documented team and team member plans
Defined team roles, goals, processes, and responsibilities
Management agreement with the team plan or resolution actions identi-
fied and responsibilities assigned
Launch data filed in the project notebook (NOTEBOOK spec.)

12 CMU/SE1-2000-TR-023

Teams generally need professional guidance to properly complete the launch process. This
guidance is provided by a trained launch coach who leads the team through the launch proc-
ess. While the TSP scripts provide essential guidance, every team has unique problems and
issues, so a simple process cannot possibly provide all the material needed to guide an inex-
perienced team through the launch process. Unless teams are very experienced and have a
team leader who has completed several TSP projects, they generally need the support of a

trained launch coach.

In launch meeting 1, the team, team leader, and launch coach meet with senior management
and marketing representatives. Senior management tells the team about the project, why it is
needed, the reasons for starting the project, and management's goals for the project. The mar-
keting representative explains the marketing need for the product, any important competitive
concerns, and any special customer considerations that the team needs to know. The objective
of meeting 1 is to inform all the team members about the job, to describe management's goals
for the team, and to convince the team members that management is relying on them to do

this important project.

In launch meetings 2 through 8, the team, team leader, and coach meet with no observers or
visitors. During these meetings, the team is led through a series of steps that are designed to
produce the conditions for effective teamwork.

In launch meeting 2, the team documents its goals and selects the team member roles. The
standard TSP team roles are team leader, customer interface manager, design manager, im-
plementation manager, test manager, planning manager, process manager, quality manager,
and support manager. Other possible roles can be assigned as needed. Examples would be
safety manager, security manager, or performance manager. Every team member takes at
least one team role. When there are more than eight team members, roles can be added or
some engineers can serve as assistant role managers. The team leader generally does not take

any other role.

In launch meetings 3 and 4, the team makes the overall project strategy and plan. The engi-
neers produce a conceptual design, devise the development strategy, define the detailed proc-
ess they will use, and determine the support tools and facilities they will need. They list the
products to be produced, estimate the size of each product, and judge the time required for
each process step. Once the tasks have been defined and estimated, the engineers estimate the
hours that each team member will spend on the project each week. From the task estimates

and weekly hours, the team generates the schedule.

Once they have an overall plan, the engineers produce the quality goals and plan in launch
meeting 5. This plan both defines the quality actions the team plans to take, and it provides a
measurable basis for tracking the quality of the work as it is done. In making the quality plan,
the team members estimate the number of defects they will inject and remove in each phase,
and how many defects will be left for system test, customer acceptance testing, and final

CMU/SEI-2000-TR-023 13

product delivery. Next, in meeting 6, the team members make detailed next-phase plans and
then review the entire team workload to ensure that these plans evenly distribute the tasks
among the members. The result is then what is called a balanced team plan. During meeting
7, the engineers identify the major project risks and rank them for likelihood and impact. The
team also assigns a team member to track each risk and it prepares a mitigation plan for the

most significant risks.

After the team has completed its plan, the members hold meeting 8 to prepare for the man-
agement review and then they conduct the review with management in meeting 9. During this
meeting, the team explains the plan, describes how it was produced, and demonstrates that all
the members agree with and are committed to the plan. If the team has not met management's
objectives, it should generally prepare and present alternate plans that show what could be
done with added resources or requirements changes. The principal reason for showing alter-

nate plans is to provide management with options to consider in case the team's plan does not

meet business needs. At the end of the TSP launch, the team and management should agree

on how the team is to proceed with the project.

In the final postmortem step, the team reviews the launch process and submits process im-
provement proposals (PIPs) on suggested process improvements. The team also gathers and

files the launch data and materials for later use.

14 CMU/SEI-2000-TR-023

6 The TSP Teamworking Process

Once the TSP team is launched, the principal need is to ensure that all team members follow
the plan. This includes the following major topics:

Leading the team

Process discipline

Issue tracking

Communication

Management reporting

Maintaining the plan

Estimating project completion

Rebalancing team workload

Relaunching the project

TSP quality management

6.1 Leading the Team
The team leader is responsible for guiding and motivating the team members, handling cus-
tomer issues, and dealing with management. This includes the day-to-day direction of the
work, protecting team resources, resolving team issues, conducting team meetings, and re-
porting on the work. Overall, the team leader's principal responsibility is to maintain the
team's motivation and energy and to ensure that it is fully effective in doing its work.

One key leadership responsibility is maintaining process discipline. Here, the team leader
ensures that the engineers do the job the way they had planned to do it. During the launch,
they defined the process for doing the job. While doing the job, the team leader monitors the
work to ensure that everyone follows the process and plan that the team produced.

Almost every project faces heavy schedule and resource pressure, so there is always a temp-
tation to cut corners. However, when teams stop following their defined processes, they have
no way to tell what they are supposed to do or where they stand on the job. In monitoring
process discipline, the team leader should check that every team member records his or her
process data, reports on weekly status, and produces quality products.

CMU/SEI-2000-TR-023 15

Another important team leader responsibility is ensuring that all of the issues that the team
members identify are managed and tracked. With the TSR engineers generally discuss prob-
lems in the weekly team meeting. The team leader should first check that each issue is one
that the team should handle and if it is, decide which team member should be responsible for
managing and tracking it. Finally, the team tracks every issue with the issue tracking log
(ITL) and reviews all the outstanding issues at each weekly meeting.

6.2 Communication
The team leader is responsible for maintaining open and effective team communication.
When team members do not know the project's status, understand what their team mates are
doing, or know what challenges lie ahead, it is hard for them to stay motivated. Communica-
tion is a key part of maintaining the team's energy and drive and facilitating communication

is a key part of the team leader's responsibilities.

During the weekly meeting, the team leader first reviews project status and any management
issues or concerns. The team members then each review their work for the previous week, the
work they plan for the next week, their role-management activities, and the status of the risks
they are tracking. They also bring up any issues or problems and describe any areas where
they will need help or support during the next week.

Another critical team leader responsibility is keeping management informed about team
status and progress. The TSP process calls for teams to make weekly reports that show where
the team stands against the plan. The process also calls for frequent, factual, and complete

customer status reports.

6.3 Maintaining the Plan
Once teams have completed the project launch and started on the job, the plan guides the
work. It also provides a benchmark for measuring progress as well as means to identify
problems that might threaten the project schedule. With sufficient warning, teams can often

take timely action to prevent schedule slippage.

TSP teams track progress against the plan every week using a method called earned value
[Humphrey 95]. With earned value, each task is assigned a value based on the percentage of
the total project estimate that is required for that task. Thus, if a project was planned to take
1,000 task hours, a 32-hour task would have 3.2 planned value, or 100*32/1000 = 3.2%.
Then, when the team has completed that task, the engineers would have accumulated 3.2

earned value points, no matter how long the task actually took.

Engineering teams have many types of tasks and on any reasonably complex project, the
tasks will often be completed in a different order than originally planned. Since some tasks
will be completed early and others will be late, there is no simple way to tell whether the
project is ahead of schedule or behind. The earned value method provides a value for every

16 CMU/SEI-2000-TR-023

task, and when that task is completed, the team earns that value. Thus, with earned value, the
team can tell precisely where the project stands. For example, the team might report the

weekly data shown in Table 2.

Table 2: Weekly Team Data

Week 3 Plan Actual
Task hours 106 98
Task hours to date 300 274
Earned value 1.9 2.1
Earned value to date 5.8 5.3

Even during the early requirements or design work, the team reports tell management pre-
cisely where the team stands against the plan. For example, from the data in Table 2, man-
agement could see that the team's performance has improved significantly in the last week. In
the previous two weeks, they had 176 task hours (274 - 98), or an average of 88 task hours
per week. This week they achieved 98 hours. Similarly, even though they are behind on cu-
mulative earned value to date, they accomplished more than planned in the latest week.

The earned value method also helps teams estimate when they will finish the job. From the
weekly data, the engineers can see how many hours they have spent for each point of earned
value. Then, assuming that they continue to work at the same rate, they can estimate when
they will finish the work. For example, from Table 2, the team has accumulated 5.3 earned
value points (EV) in 3 weeks, or 1.7667 EV per week. At that rate, the job will take
100/1.7667 = 56.6 weeks. Since they have completed week 3, this is 53.6 more weeks of
work. If the team is able to continue working at the rate for the most recent week, however,
the total job would take only (100 - 5.8)/2.1 = 44.9 more weeks.

The earned value data not only help team members to see where they are, but these data also
help management to understand what needs to be done to complete the job on time. With
earned value, TSP teams and their managers can anticipate schedule problems very early in
the job. Then, they generally have time to take any needed recovery actions.

While earned value is helpful in tracking team progress and providing the engineers with a
sense of accomplishment, it does not address task priorities or dependencies. To properly
manage task relationships, the engineers must maintain their personal plans and ensure that
they identify and resolve all task dependencies with their teammates. On larger teams, help-
ing the team members do this is an important part of the planning manager's role responsibil-

ity.

CMU/SEI-2000-TR-023 17

6.4 Rebalancing Team Workload
Unbalanced workload can cause a team to be inefficient. This occurs when some engineers
have much more work than others have. This problem has several causes. First, the most ex-
perienced engineers are generally involved in much more of the work than the team members
with less experience. While the most experienced engineers could probably do each task
faster and better than the others, this would overload them and leave the others with little to
do. Another cause of unbalanced workload is the normal fluctuation in engineering perform-

ance. Some engineers will finish their tasks ahead of the plan, and others will fall behind.

While unbalanced workload is natural, it is not efficient. Unless every member of the team is

always fully occupied, the team cannot be fully effective. Every week, when the team exam-
ines project status, the engineers can see if their workload is unbalanced. If it is. the team

should rebalance the plan. With the TSP, teams do this as often as needed—every week if
necessary. Once the engineers have completed a TSP launch and have detailed persona! plans,

they can generally rebalance team workload in only an hour or two.

The TSP team launch produces an overall project plan extending from the initial team launch
until final project completion. Depending on the project, the plan could cover a few weeks, or
it could take many years. With the TSP, every team member produces a detailed plan for the
next project phase. Since engineers cannot generally make detailed plans for more than about
three or four months, the TSP breaks projects into phases of about three to four months dura-
tion. Teams relaunch their projects at the beginning of each phase or cycle. Whenever teams
find that the plan no longer helps them to do their jobs, they should relaunch their projects.
Teams should also be relaunched when there are major changes in the work to be done or in

team membership.

CMU/SEI-2000-TR-023
lo

7 TSP Quality Management

While most organizations will agree that quality is important, few teams know how to man-
age the quality of their products. Furthermore, there are no general methods for preventing
the injection of defects. People develop software, and people make mistakes. These mistakes
are the source of software defects. In the TSP, the principal quality emphasis is on defect

management.

To manage quality, teams must establish quality measures, set quality goals, establish plans to
meet these goals, measure progress against the plans, and take remedial action when the goals
are not met. The TSP shows teams how to do this. The elements of TSP quality management
are making a quality plan, identifying quality problems, and finding and preventing quality
problems. These topics are covered in the following paragraphs.

7.1 The Quality Plan
During the team launch, TSP teams make a quality plan. Based on the estimated size of the
product and historical data on defect injection rates, they estimate how many defects they will
inject in each phase. Where teams do not have historical defect injection data, they can use
the TSP quality planning guidelines shown in Table 3. These will help them establish quality
goals. Once the engineers have estimated the defects to be injected, they estimate defect re-
moval, again using historical data or the TSP quality guidelines. These removal estimates are
based on the yield for each defect removal phase. Here, yield refers to the percentage of the
defects in the product at phase entry that are removed in that phase. Once the injection and
removal estimates have been made, the team can generate the quality plan. Finally, the team
examines the quality plan to see if the quality parameters are reasonable and if they meet the
team's quality goals. If not, the engineers adjust the estimates and generate a new quality

plan.

CMU/SEI-2000-TR-023 19

Table 3: TSP Quality Guidelines
Measure
Percent Defect Free (PDF)

Compile
Unit Test
Integration Test
System Test

Defects/KLOC:
Total defects injected
Compile
Unit Test
Integration Test
System Test

Defect Ratios
Detailed design review defects /unit test defects
Code review defects/compile defects

Development Time Ratios
Requirements inspection/requirements time
High-level design inspection/high-level design time
Detailed design/coding time
Detailed design review/detailed design time
Code review/code time

Review and Inspection Rates
Requirements pages/hour
High-level design pages/hour
Detailed design text lines/hour
Code LOC/hour

Defect Injection and Removal Rates
Requirements defects injected/hour
Requirements inspection defects removed/hour
High-level design defects injected/hour
High-level design inspection defects removed/hour
Detailed design defects injected/hour
Detailed design review defects removed/hour
Detailed design inspection defects removed/hour
Code defects injected/hour
Code review defects removed/hour
Compile defects injected/hour
Code inspection defects removed/hour
Unit test defects injected/hour

Phase Yields
Team requirements inspections
Design reviews and inspections
Code reviews and inspections
Compiling
Unit test - at 5 or less defects/KLOC
Integration and system test - at < 1.0 defects/KLOC

Goal

> 107r
> 50%
>70%
>907c

75 - 150
< 10
<5

<0.5
<0.2

>2.0
>2.0

>0.25
>0.5

> 1.00
>0.5
>0.5

<2
<5

<100
<200

0.25
0.5

0.25
0.5

0.75
1.5
0.5
2.0
4.0
0.3
1.0

0.067

70%
■70%

-70%
-50%

90%
80%

Before compile
Before unit test
Before integration test
Before system test

>75%
>85%

> 97.5%

Comments

If not PSP trained, use 100 to 200.
All defects
All major defects (in source LOC)
All major defects (in source LOC)
All major defects (in source LOC)

All major defects (in source LOC)
All major defects (in source LOC)

Elicitation in requirements time
Design work only, not studies

Single-spaced text pages
Formatted design logic
Pseudocode - equal to 3 LOC
Logical LOC

Only major defects
Only major defects
Only major defects
Only major defects
Only design defects
Only design defects
Only design defects
All defects
All defects in source LOC
Any defects
All defects in source LOC
Any defects

Not counting editorial comments iiwi V,UUIIUII^ wuii^uui vviiiiiiviiu

Using state analysis, trace tables
Using personal checklists
90+ % of syntax defects
For high defects/KLOC - 50-75%
For high defects/KLOC - 30-65%
Assuming sound design methods
Assuming logic checks in reviews

>99%
For small products, 1 defect max.
For small products, 1 defect max.

Note: Only use these initial criteria until you have historical TSP data and can develop your own.

20 CMU/SEI-2000-TR-023

Once the team members have generated the quality plan, the quality manager helps them to

track performance against it. The quality plan contains the information shown in Table 4. The

quality manager tracks the data on each phase for each part of the system to see if the meas-

ures are within the values set by the quality plan. If not, the quality manager raises the issue

in the weekly meeting and suggests what the team should do about it.

Table 4: TSP Quality Plan—Form SUMQ

Name Date

project Launch/Phase
Part/Assembly Assembly Level

Percent Defect Free P'an Actual
In compile
In unit test
In integration test
In system test .
In acceptance test
In one year of use
In product life

Defect/page
Requirements inspection
HLD review
HLD inspection

Defects/KLOC
DLD review
DLD inspection
Code review
Compile
Code inspection
Unit test
Build and integration
System test
Total development

Acceptance test
Product life

Total
Defect Ratios

Code review/Compile
DLD review/Unit test

Development time ratios (%)
Requirements inspection/Req. time
HLD inspection/HLD time
DLD/code
DLD review/design
Code review/code

A/FR
Personal review rates

DLD lines/hour
Code LOC/hour

CMU/SEI-2000-TR-023 21

Inspection rates
Requirement pages/hour
HLD pages/hour
DLD lines/hour
Code LOC/hour

Part/Assembly

Defect-injection Rates
Requirements
HLD
DLD
Coding
Compile
Unit test
Build and integration
System test

Defect-removal Rates
Requirements
System test planning
Requirements inspection
HLD
Integration test planning
HLD inspection
DLD review
Test development
DLD inspection
Code
Code review
Compile
Code inspection
Unit test
Build and integration
System test

Phase Yields
Requirements inspection
HLD inspection
DLD review
DLD inspection
Code review
Compile
Code inspection
Unit test
Build and integration
System test

Process Yields
% before compile
% before unit test
% before build and integration
% before system test
% before system delivery

Date

Plan Actual

Plan Actual

Plan Actual

Plan Actual

22 CMU/SEI-2000-TR-023

7.2 Identifying Quality Problems
In the TSP, there are several ways to identify quality problems. For example, by comparing
the data for any module or component with the quality plan, one can quickly see where defect
densities, review rates, yields, or other measures deviate significantly for the team's goals.

For even relatively small projects, it can take a substantial amount of time to examine the
process data. To help alleviate this problem, the TSP introduces a series of quality measures.

These measures are

• Percent defect free—PDF

• Defect-removal profile

• Quality profile

• Process quality index—PQI

A typical PDF plot is shown in Figure 5, which shows the percentage of the system's compo-
nents that had no defects found in a particular defect removal phase. By tracking PDF curves,
one can see if any particular phase is troublesome. This can be seen by comparing the PDF
curves for several similar projects. Where there are problems, the quality manager can look at
data on lower level components to identify the source of the problem and recommend what

the team should do about it.

no
CMU/SEI-2000-TR-023

Development Phase

Figure 5: Percent Defect Free (PDF)

Figure 6 shows a typical defect-removal profile. While the PDF plot can only be produced for
an overall system or large component, the defect-removal profile can be drawn for the sys-
tem, each of its subsystems, any component, or even down to the module level. Thus, if the
PDF or system level defect-removal profile indicates problems, the quality manager can ex-
amine progressively lower level defect-removal profiles to find the source of the trouble.

24 CMU/SEI-2000-TR-023

Development Phase

Figure 6: Defect Removal Profile

The quality profile is used with individual program modules [Humphrey 98]. An example
quality profile is shown in Figure 7. The quality profile measures the process data for a mod-
ule against the organization's quality standards. If the organization does not have sufficient
historical data to produce its own standards, the TSP quality guideline suggests values. The
five quality profile dimensions indicate module quality based on data for design, design re-
views, code reviews, compile defects, and unit test defects. After a little practice, PSP-trained
engineers can rapidly examine a large number of quality profiles and identify the product

elements with likely quality problems.

CMU/SEI-2000-TR-023 25

Design/Code time

Design review time <(/ x \ X^ > Code review time

Unit test D/KLOC N ^^Compile D/KLOC

Figure 7: The Quality Profile

The process quality index (PQI) is produced by taking the product of the five dimensional
values of the quality profile to produce a single quality figure of merit [Humphrey 1998].
With PQI values above about 0.4, program modules are generally defect free. With the PQI,
organizations can sort a large number of modules by their likely quality levels. This is par-
ticularly useful with very large systems having hundreds or thousands of modules. Teams can
quickly zero in on the modules that are most likely to be troublesome in test or customer use.

7.3 Finding and Preventing Quality Problems
The TSP quality measures can indicate likely quality problems even before the first compile,
and they provide a reliable measure of module or component quality before the start of inte-
gration or system test. Once a TSP team has identified the modules or components that most
likely have quality problems, the remedial actions suggested by the TSP are as follows:

• Monitor the module during test to see if problems are found and then determine the re-

medial action.

• Reinspect the module before integration or system test.

• Have an engineer rework the module to fix suspected problems.

• Redevelop the module.

26
CMU/SEI-2000-TR-023

The PSP and TSP processes are designed to prevent problems before they occur. In PSP
training, engineers typically learn how to reduce their defect injection rates by 40% to 50%.
In the TSP, the design manager can further reduce defect injection rates by ensuring that the
team produces a complete and high-quality design. The quality plan and process tracking
make the engineers more sensitive to quality issues so that they are more careful, reducing
defects even further. Finally, the TSP introduces a defect review where every post-
development defect is analyzed to identify potential process changes that will find or prevent

similar defects in the future.

CMU/SEI-2000-TR-023 27

28 CMU/SEI-2000-TR-023

8 TSP Introduction

The TSP is being introduced into both industrial and academic environments. An introductory
TSPi process and textbook are available for teaching university team courses [Humphrey 00].
Before taking the TSPi course, students must have taken a PSP course with either the Disci-
pline for Software Engineering text or the Introduction to the Personal Software Process text
[Humphrey 95, Humphrey 97]. The TSPi course has been taught in a number of universities
and the early experience indicates that the students and faculty find it helpful. However, no
studies have yet been published on the use of the TSPi process and methods.

Introducing the TSP into engineering organizations is the principal focus of the TSP effort at
the Software Engineering Institute (SEI). The TSP was designed for engineering teams, and
its introduction has been initially targeted at teams developing software-intensive products.
To support use by industrial teams that include other than software specialties, the SEI has
developed an introductory PSP course for professionals who are not software proficient. It
has also introduced a series of training and qualification programs so that organizations can
obtain their own PSP instructors. In addition, the SEI provides TSP coach training so that or-
ganizations can launch and coach their own TSP teams. The SEI has established relationships
with a number of transition partners who are qualified to teach the PSP and to coach TSP
teams. (For further information on these topics, refer to www.sei.cmu.edu/tsp.)

CMU/SEI-2000-TR-023 29

30 CMU/SEI-2000-TR-023

9 TSP Experience

While the TSP is relatively new, results have been reported by a number of organizations.

Some examples are summarized in the following paragraphs.

• Teradyne found that, prior to the TSP, defect levels in integration test, system test, field
testing, and customer use averaged about 20 defects per KLOC (1,000 lines of code, or
LOC). The first TSP project reduced these levels to 1 defect per KLOC. Since it cost an
average of 12 engineering hours to find and fix each defect, Teradyne saved 228 engi-
neering hours for every 1,000 LOC of program developed. Since the typical cost to code
and unit test 1,000 LOC is about 50 engineering hours, the savings in defect repair costs
were about 4.5 times the cost of producing the programs in the first place.

• Hill Air Force Base, near Salt Lake City, Utah, is the first U.S. government organization
to be rated at CMM Level 5 [Paulk 95]. The first TSP project at Hill found that team pro-
ductivity improved 123% and test time was reduced from an organizational average of
22% to 2.7% of the project schedule [Webb 00].

• Boeing, on a large avionics project, had the results shown in Figures 8 and 9. The 94%
reduction in system test time resulted in a substantial improvement in the project sched-
ule and allowed Boeing to deliver a high-quality product ahead of schedule.

CMU/SEI-2000-TR-023 31

Number
of defects
detected

(Boeing pilot #1)

Software size

75% lower
defects

Release # 6 Release # 7 Release # 8 Release # 9

(PSP/TSP
trained)

Figure 8: TSP Test Defects

System
test time

(Boeing pilot #1)

32 days 41 daVs

28 days

2.36X more
SLOC count

94% less time

,r 4 days
Late'1« l

Release #6 Release #7 Release #8 Release #9

(PSPH"SP
trained)

Figure 9: TSP Test Time

32 CMU/SEI-2000-TR-023

10 Status and Future Trends

The initial reason for developing the TSP was to provide an environment where PSP-trained
engineers would find it natural to use disciplined methods. PSP training by itself had not been
found sufficient to get engineers to consistently use the methods [Ferguson 97]. There are
several reasons why this is the case. First, without training, managers generally do not under-
stand the PSP methods or appreciate their benefits. They then often object to their engineers
spending time on planning, doing personal reviews, or gathering and analyzing data. Second,
disciplined work is hard to do even with support and coaching. Without such help, long peri-
ods of sustained disciplined work are almost impossible. The initial motivation for the TSP

design was to address these problems.

10.1 Training and Support

TSP training is offered by the Software Engineering Institute (SEI) for team leaders and
launch coaches. The principal training needs of engineers are covered by the PSP training

courses.

Tool support is also very important for the TSP. The SEI has developed a prototype tool that
it makes available to teams it has launched as well as to its transition partners. It is also de-
veloping a tool specification to guide commercial vendors in developing tools to support the
TSP process. Without proper tool support, the volume of data produced by even relatively
small projects is almost unmanageable. (For further information on the available SEI materi-
als and support, see http://www.sei.cmu.edu/tsp.)

10.2 Future Trends
Since the initial TSP objectives have largely been met, the current and immediate next TSP
development efforts are to transition the basic TSP process into general industrial use as well
as to increase the number of academic institutions teaching these methods. The principal fo-
cus of the industrial work is on improving the training and introduction methods so that engi-
neers more faithfully follow the process and to encourage the development of commercial
TSP support tools and environments. Future activities will include extending the TSP process
to various types of teams and to larger teams. In the longer term, extensions are needed for
very large teams. The academic-related efforts primarily concern faculty workshops and the

publication of results.

CMU/SEI-2000-TR-023 33

Because of the wide variety of teamwork situations, a series of TSP processes will be needed.
The basic TSP was designed for teams of 2 to 20 members but it is most effective for teams
of 3 to about 12 people. The multiple TSP process, or TSPm. is designed for multiple teams
of up to about 100 to 150 engineers. In addition, several TSP extensions will be needed for
distributed teams that have members at different physical locations and for large projects with
several teams at multiple locations. Similarly, a functional team process will be needed for
test or maintenance teams. Finally, a TSP extension will be required for really large teams of
several hundred to several thousand engineers who work on large program-wide projects.
This process must also span organizational and technology boundaries.

As teams grow larger, the relationships among the PSP, TSP, and CMM will become more
important. With truly large program-wide teams, the distinction between the team and the

organization process will disappear. Here, the organizational CMM activities must be incor-

porated into the team process in much the same way that the operational process activities are
incorporated at present. With smaller TSP and TSPm teams, the team process and the organ-

izational process must be related. Work is needed to more closely couple these process im-
provement strategies and to show both the CMM and TSP communities how these two
frameworks can complement and support each other.

Ultimately, the relationship of the organizational processes with the overall business process
must be defined. Coupling product-related teams with business processes will require some
fundamental changes in organizational thinking. However, once these processes are properly
related, the ability of TSP teams to capitalize on the skills of their members and to precisely
plan and report on their work will significantly improve the overall performance of engi-

neering organizations.

34 CMU/SEI-2000-TR-023

References

[Cummings 87] Cummings, Thomas G. "Self-Regulating Work Groups: A So-
cio-Technical Synthesis," Academy of Management, Vol. 3,

No. 3, July 1978, p. 627.

[DeMarco 87] DeMarco, T. and Lister, T. Peopleware, Productive Projects and
Teams. New York: Dorset House Publishing Co., 1987.

[Deming 82] Deming, W. Out of the Crisis. , Cambridge, MA: MIT Center for
Advanced Engineering Study, 1982.

[Dyer 84] Dyer, J. 'Team Research and Team Training: A State-of-the-Art Re-
view." Human Factors Review, The Human Factors Society, Inc.

(1984): 286, 309.

[Fagan 76] Fagan, M. "Design and Code Inspections to Reduce Errors in Pro-
gram Development." IBM Systems Journal 8, 3 (1976).

[Fagan 86] Fagan, M. "Advances in Software Inspections." IEEE Transactions

on Software Engineering SE-I2, 7 (July 1986).

[Ferguson 97] Ferguson, P.; Humphrey, W. S.; Khajenoori, S.; Macke, S.; and Mat-
vya, A. "Introducing the Personal Software Process: Three Industry
Case Studies." IEEE Computer 30 (May 1997): 24-31.

[Humphrey 89] Humphrey, W. S. Managing the Software Process. Reading, MA:
Addison-Wesley, 1989.

[Humphrey 95] Humphrey, W. S. A Discipline for Software Engineering. Reading,
MA: Addison-Wesley, 1995.

[Humphrey 97] Humphrey, W. S. Introduction to the Personal Software Process.
Reading, MA: Addison-Wesley, 1997.

[Humphrey 98] Humphrey, W. S. "The Software Quality Profile." Software Quality
Professional 1,1 (1998): 8-18.

CMU/SEI-2000-TR-023 35

[Humphrey 00]

[Juran 88]

Humphrey. W. S. Introduction to the Team Software Process. Read-
ing. MA: Addison-Wesley. 2000.

Juran, J. M. and Gryna. F. Juran's Quality Control Handbook,
Fourth Edition. New York: McGraw-Hill Book Company. 1988.

[Katzenbach 93] Katzenbach. J. and Smith. D. The Wisdom of Teams. Boston, MA:
Harvard Business School Press, 1993.

[Mohrman 95]

[Paulk 95]

[Shaw 81]

[Shellenbarger
00]

[Stevens 94]

[Webb 00]

Mohrman S. Designing Team-Based Organizations, New Forms for

Knowledge Work. San Francisco, CA: Jossey-Bass Publishers. 1995.

Paulk, M. et al., The Capability Maturity Model: Guidelines for Im-

proving the Software Process. Reading, MA: Addison Wesley, 1995

Shaw, M. Group Dynamics: The Psychology of Small Group Behav-

ior. New York: McGraw-Hill, 1981.

Shellenbarger, S. "To Win the Loyalty of Your Employees, Try a
Softer Touch." Vie Wall Street Journal January 26, 2000: B1.

Stevens. M. and Campion, M. "The Knowledge, Skill, and Ability
Requirements for Teamwork: Implications for Human Resource
Management." Journal of Management20, 2 (1994).

Webb, D. R. "Managing Risk With TSR" Crosstalk, June 2000: 20.

36 CMU/SEI-2000-TR-023

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

-pHbiicliTorlinq burden lor this collection ol information is estimated to average 1 hour per response, including the time lor reviewing instructions searching
«tine data sources gathernoand maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
hurdLfest mate S ohe aspect ™his collection ol information, including suggestions for reducing this burden, to Washington Headquarters Services,
aS^SÄ».nd Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA22202-4302, and to .he Office of Management

and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. .

1. " 'J"*" agency use only
(leave blank)

2. report date
November 2000

3.

4. title and subtitle

iSMv
The Team Software Process*™ (TSPam)

author(s)

Watts S. Humphrey

performing organization name(s) and address(es)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

report type and dates covered

Final

5. funding numbers

C —F19628-00-C-0003

9. sponsoring/monitoring agency name(s) and address(es)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731 -2116

11. supplementary notes

10.

performing organization
report number

CMU/SEI-2000-TR-023

sponsoring/monitoring
agency report number

ESC-TR-2000-023

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. abstract (maximum 200 words)

The Team Software ProcessSM (TSP) guides engineering teams in developing software-intensive products.
Early experience with the TSP shows that its use improves the quality and productivity of engineering teams
while helping them to more precisely meet cost and schedule commitments. The TSP is designed for use with
teams of 2 to 20 members, and the larger multi-team TSP process is designed for teams of up to about 150
members. While TSP versions are planned for larger projects, they are not available at the time of this writing.

This report describes the TSP and how it was developed. Starting with a brief background discussion of soft-
ware quality the report provides an overview of the basic elements of teamwork. It then describes the relation-
ships among the TSP, Personal Software Process3" (PSP), and Capability Maturity Model® (CMM) process im-
provement initiatives. The report also describes the TSP process structure, launching a TSP team, the TSP
teamworking process, and the issues and methods for introducing the TSP. The report concludes with a review
of TSP experience, current status, and trends.

SM Team Software Process, TSP, Personal Software Process, and PSP are service marks of Carnegie Mellon Uni-

versity.
® Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office.

14. subject terms
Team Software Process, TSP, software development, software
engineering, quality, productivity

15. number of pages

52

16. Price Code

7. security classification
of report

UNCLASSIFIED

18. security
classification of
this page

UNCLASSIFIED

19. security classi-
fication of
abstract

UNCLASSIFIED

20. limitation of abstract

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

